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In a paper by K. Driver and P. Duren (1999, Numer. Algorithms 21, 147�156) a
theorem of Borwein and Chen was used to show that for each k # N the zeros of
the hypergeometric polynomials F(&n, kn+1; kn+2; z) cluster on the loop of the
lemniscate [z : |zk(1&z)|=kk�(k+1)k+1], with Re[z]>k�(k+1) as n � �. We
now supply a direct proof which generalizes this result to arbitrary k>0, while
showing that every point of the curve is a cluster point of zeros. Examples
generated by computer graphics suggest some finer asymptotic properties of the
zeros. � 2001 Academic Press
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1. INTRODUCTION

The Gauss hypergeometric function is defined as

F(a, b; c; z)=1+ :
�

m=1

(a)m (b)m

(c)m

zm

m !
, |z|<1,

where

(:)m=:(:+1) } } } (:+m&1)=
1(:+m)

1(:)

doi:10.1006�jath.2001.3580, available online at http:��www.idealibrary.com on

329
0021-9045�01 �35.00

Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

1 Both authors acknowledge support from the National Science Foundation. The paper is
an outgrowth of a Research Experience for Undergraduates project at the University of
Michigan.



is Pochhammer's symbol. If a=&n is a negative integer, the series terminates
and reduces to a polynomial of degree n, called a hypergeometric polyno-
mial. Hypergeometric functions have the Euler integral representation

F(a, b; c; z)=
1(c)

1(b) 1(c&b) |
1

0
tb&1(1&t)c&b&1 (1&zt)&a dt

for Re[c]>Re[b]>0.
Choosing a=&n and b=c&1=kn+1 for n # N and arbitrary k>0, we

arrive at the representation

F(&n, kn+1; kn+2; z)=(kn+1) |
1

0
[tk(1&zt)]n dt

for the class of hypergeometric polynomials to be treated in this paper. For
fixed z # C, we regard

f (t)=tk(1&zt)

as a function of the complex variable t. Note that f (t) has zeros at 0 and
1
z , while f $(t) has a zero at k

(k+1) z . Thus the surface | f (t)| has a saddle
point at k

(k+1) z .
The main purpose of this paper is to prove the following theorem.

Theorem. For each real number k>0, the zeros of the hypergeometric
polynomials F(&n, kn+1; kn+2; z) approach the half-lemniscate

{z : |zk(1&z)|=
kk

(k+1)k+1 , Re[z]>
k

k+1=
as n � �. Furthermore, every point of this curve is a cluster point of zeros.

In the special case where k is a positive integer, Driver and Duren [4]
invoked a theorem of Borwein and Chen [1] to show that the zeros cluster
on the right-hand loop of the lemniscate. On the basis of graphical
evidence, they conjectured the generalization to arbitrary k>0, where the
argument of Borwein and Chen does not apply. Our contribution in the
present paper is to give a complete proof, more explicit than that of
Borwein and Chen, which applies to arbitrary k>0 and gives further
information.
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2. THE SADDLE-POINT METHOD

In order to discuss the asymptotic behavior of the zeros of the hyper-
geometric polynomials F(&n, kn+1; kn+2; z), we shall use the saddle-
point method (cf. de Bruijn [2] or Copson [3]) to get an asymptotic
expansion for the integral

|
1

0
[ f (t)]n dt, f (t)=tk(1&zt).

We begin with the following lemma.

Lemma 1. (a) The inequality | f (1)|>| f ( k
(k+1) z)| holds if and only if

|zk(1&z)|>kk�(k+1)k+1. Similarly, | f (1)|<| f ( k
(k+1) z)| if and only if

|zk(1&z)|<kk�(k+1)k+1.

(b) If Re[z]> k
k+1 , the function | f (t)| has a unique path of steepest

ascent from 1
z to 1. If Re[z]< k

k+1 , there is a unique path of steepest ascent
from 0 to 1.

Proof. (a) The condition | f (1)|>| f ( k
(k+1) z)| says that |1&z|>

|( k
(k+1)z)k (1& k

k+1)|, which reduces to |zk(1&z)|>kk�(k+1)k+1.
Geometrically, the statement is that | f (1)|>| f ( k

(k+1) z)| for z outside the
lemniscate, while the inequality is reversed when z is inside either loop of
the lemniscate.

(b) The line through the saddle-point k
(k+1) z perpendicular to the

linear segment from 0 to 1
z is a kind of ``continental divide'' that separates

the plane into two basins containing 0 and 1
z , respectively. Any point in the

0-basin is joined to 0 by a unique path of steepest descent, orthogonal to
the level curves of f (t); points in the 1

z -basin can be similarly joined to 1
z .

(See Fig. 1.) To prove (b), we have to show that the point 1 lies in the
1
z -basin if and only if Re[z]> k

k+1 . For this purpose we multiply by z
|z| ,

which rotates the figure so that both zeros move to the real axis and the
line through the saddle-point is carried to the vertical line through the
point k

(k+1) |z| . Thus the point 1 is in the 1
z -basin if and only if

Re { z
|z|=>

k
(k+1) |z|

,

which is equivalent to the condition Re[z]> k
k+1 . The same analysis shows

that the point 1 is in the 0-basin if and only if Re[z]< k
k+1 . This proves

the lemma.
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FIG. 1. Points in the 0-basin and in the 1
z -basin can be joined by orthogonal trajectories

only to 0 and 1
z , respectively.

If Re[z]> k
k+1, we deform the path of integration to write

|
1

0
[ f (t)]n dt=|

1�z

0
[ f (t)]n dt+|

1

1�z
[ f (t)]n dt,

following the linear path from 0 to 1
z and the path of steepest ascent

(guaranteed by Lemma 1) from 1
z to 1. The linear path from 0 to 1

z is
orthogonal to the level curves of f (t) and is therefore the path of steepest
ascent from 0 to the saddle-point k

(k+1) z , followed by the path of steepest
descent to 1

z . To compute the first integral we make the substitution t= s
z

for 0�s�1, so that

|
1�z

0
[ f (t)]n dt=

1
zkn+1 |

1

0
[sk(1&s)]n ds=

n !
zkn+1

1(kn+1)
1((k+1) n+2)

. (1)

The second integral is more difficult to handle. We first treat the special
case k=1, where a complete asymptotic series can be calculated explicitly.
We will therefore assume first that Re[z]> 1

2 . In order to find the path of
steepest ascent from 1

z to 1, we use the fact that f (t) will have constant
argument along this path (see Copson [3, p. 65]). Thus we can parameterize
the path by letting f (t)= f (1) r, or

t(1&zt)=r(1&z), 0�r�1.
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Solving this quadratic equation yields

t=
1+- 1&4z(1&z) r

2z
,

where the branch of the square root is chosen for which - 1=1 in order
to make r=0 correspond to t= 1

z . Note, however, that t=1 when r=1, so
we must interpret

- 1&4z(1&z)=- (1&2z)2=&(1&2z).

To transform the integral, we observe that (1&2zt) dt=(1&z) dr, or

dt=&
1&z

- 1&4z(1&z) r
dr,

choosing the branch of the square root as indicated above. Then

|
1

1�z
[ f (t)]n dt=&|

1

0
[r(1&z)]n 1&z

- 1&4z(1&z) r
dr

=&(1&z)n+1 |
1

0

rn

- 1&4z(1&z) r
dr. (2)

If Re[z]< k
k+1 , we again consider first the special case k=1, so that

Re[z]< 1
2 . Then we may evaluate the integral �1

0 [ f (t)]n dt over the path
of steepest ascent from 0 to 1. Again let f (t)= f (1) r, 0<r<1. Now,
however, it is convenient to write

t=
1&- 1&4z(1&z) r

2z
,

so that the branch of the square root with - 1=1 will give t=0 when
r=0. To make t=1 when r=1, we must now interpret

- 1&4z(1&z)=1&2z.

The result is

|
1

0
[ f (t)]n dt=(1&z)n+1 |

1

0

rn

- 1&4z(1&z) r
dr. (3)
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For general k>0 the calculations of the integrals (2) and (3) are very
similar. For Re[z]> k

k+1 we write

f (t)=tk(1&zt)=(1&z) r, 0�r�1, (4)

so that

tk&1[k&(k+1) zt] dt=(1&z) dr

and

|
1

1�z
[ f (t)]n dt=(1&z)n+1 |

1

0

rn

tk&1[k&(k+1) zt]
dr, (5)

where t=t(r) is a function determined implicitly by (4), with t(0)= 1
z and

t(1)=1. For Re[z]< k
k+1 , we find

|
1

0
[ f (t)]n dt=(1&z)n+1 |

1

0

rn

tk&1[k&(k+1) zt]
dr, (6)

where now t(0)=0 and t(1)=1.

3. ASYMPTOTIC EXPANSIONS

We can approximate (1) by Stirling's series (cf. [5, p. 253]),

1(n+1)=e&nnn
- 2n? \1+

1
12n

+
1

288n2+O \ 1
n3++ , n � �,

to get

|
1�z

0
[ f (t)]n dt=

1
zkn+1 \ kk

(k+1)k+1+
n

- 2k?

(k+1)3�2
- n

_{1+
k2&5k+1
12k(k+1) n

+O \ 1
n2+= . (7)

For k=1 and Re[z]> 1
2 we can obtain from (2) a full asymptotic expan-

sion for �1
1�z [ f (t)]n dt. Letting w=4z(1&z), we use Newton's binomial

series to get the formal expansion

[1&wr]&1�2=[(1&w)+w(1&r)]&1�2

=
1

- 1&w {1+ :
�

m=1
\& 1

2

m + wm

(1&w)m (1&r)m= ,
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where

- 1&w=- (1&2z)2=&(1&2z).

Inserting this expansion into (2) and integrating term by term, we arrive at
the asymptotic series (cf. [3])

|
1

1�z
[ f (t)]n dt

r
(1&z)n+1

1&2z { 1
n+1

+ :
�

m=1
\& 1

2

m + wm

(1&w)m B(n+1, m+1)=
=

(1&z)n+1

1&2z { 1
n+1

+ :
�

m=1
\& 1

2

m + n ! m !
(n+m+1)!

wm

(1&w)m=
for k=1 and Re[z]> 1

2 .
For k=1 and Re[z]< 1

2 , we use (3) in a similar way to obtain the same
asymptotic expansion

|
1

0
[ f (t)]n dt

r
(1&z)n+1

1&2z { 1
n+1

+ :
�

m=1
\& 1

2

m + n ! m!
(n+m+1)!

wm

(1&w)m= ,

because now - 1&w=1&2z.
For general k>0 we can use (5) and (6) to get asymptotic expansions

for the integrals, but since t is determined only implicitly as a function of r,
the results are less complete. Writing

t=t(r)=1+a1(t&1)+a2(r&1)2+ } } }

and referring to (4), we find that

tk(1&zt)=(1&z)+[k&(k+1) z] a1(r&1)+ } } } =(1&z)[1+(r&1)]

so that

a1=
1&z

k&(k+1) z
. (8)

Expanding the factor

1
tk&1[k&(k+1) zt]
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into the power series about r=1, and using (8), we find after some calcula-
tions that

|
1

1�s
[ f (t)]n dt

=
(1&z)n+1

k&(k+1) z {
1

n+1
+

k(1&z)[k&1&(k+1) z]
(n+1)(n+2)[k&(k+1) z]2+ } } } =

for Re[z]> k
k+1 and

|
1

0
[ f (t)]n dt=

(1&z)n+1

k&(k+1) z {
1

n+1
+

k(1&z)[k&1&(k+1) z]
(n+1)(n+2)[k&(k+1) z]2+ } } } =

for Re[z]< k
k+1.

4. ZEROS OF HYPERGEOMETRIC POLYNOMIALS

The above asymptotic formulas give a heuristic guide to the behavior of
zeros of our hypergeometric polynomials, but for more rigorous analysis it
must be shown that the error terms are uniform in the parameter z. We will
address the problem by basing the discussion directly on our integral
representations, taken over paths of steepest descent. The following lemma
will be useful.

Lemma 2. The zeros of F(&n, kn+l; kn+2; z) are contained in the disk
|z|<n+1.

The proof is based on the following classical theorem (cf. Marden [5,
p. 136]).

Enestro� m�Kakeya Theorem. If 0<a0<a1< } } } <an , then all zeros of
the polynomial

p(z)=a0+a1z+ } } } +anzn

lie in the unit disk |z|<1.

Proof of Lemma 2. The hypergeometric polynomial has the form

Fn(z)=F(&n, kn+1; kn+2; z)=c0+c1z+ } } } +cn zn,
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where

cm=(&1)m \ n
m+

kn+1
kn+m+1

.

It can be shown (by computing a derivative) that the absolute values of the
ratios

cm

cm&1

=&
n&m+1

m
kn+m

kn+m+1
, m=1, 2, ..., n,

decrease as m increases. Since

} cn

cn&1 }=
k+1

(k+1) n+1
>

1
n+1

,

it follows that

&
(n+1) cm

cm&1

>1, m=1, 2, ..., n.

This says that the coefficients of the polynomial

p(z)=Fn(&(n+1) z)=a0+a1z+ } } } +anzn

are positive and increasing: 0<a0<a1< } } } <an . Thus Lemma 2 follows
from the Enestro� m�Kakeya theorem.

We shall also need the following elementary lemma.

Lemma 3. The polynomial F(&n, kn+1; kn+2; z) has at least one zero
outside the unit circle |z|=1.

Proof. As seen in the proof of Lemma 2, the polynomial has the form
c0+c1z+ } } } +cnzn, where

c0=1, cn=(&1)n kn+1
(k+1) n+1

.

Thus the product of all zeros has modulus |
c0
cn

|>1.
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We are now ready to investigate the asymptotic behavior of the zeros.
For Re[z]< k

k+1 , we know from (6) that

F(&n, kn+1; kn+2; z)=(kn+1) |
1

0
[ f (t)]n dt

=(kn+1)(1&z)n+1 |
1

0

rn

tk&1[k&(k+1) zt]
dr,

where t=t(r) follows the path of steepest ascent of | f | from 0 to 1, with
t(0)=0 and t(1)=1.

This path is determined implicitly by (4). Substituting (4) into the
integral, we see that any zeros z=znj of F(&n, kn+1; kn+2; z) in the half-
plane Re[z]< k

k+1 must satisfy

n |
1

0

(1&zt) trn&1

k&(k+1) zt
dr=0.

If the zeros are further restricted by the inequality |z& k
k+1|�= for

some =>0, then the path of integration t=t(r) is bounded away from the
saddle point k

(k+1) z , and the denominator of the integrand satisfies
|k&(k+1) zt|�$>0, where $ is independent of z. Thus for any fixed \
with 0<\<1, we have by Lemma 2

n } |
\

0

(1&zt) trn&1

k&(k+1) zt
dr }�Cn2 |

\

0
rn&1 dr=Cn\n � 0 (9)

as n � �.
On the other hand, we will now show that for \ sufficiently close to 1,

the integral

n |
1

\

(1&zt) trn&1

k&(k+1) zt
dr (10)

is bounded away from zero. We know that Re[zt]< k
k+1 , since the path

t=t(r) must lie on the same side of the ``continental divide'' (cf. proof of
Lemma 1) as the point 1. Our restriction on z further ensures that
|zt& k

k+1|> =
2 for t sufficiently near 1. But the linear fractional mapping

|=,(`)=
1&`

k&(k+1) `

338 DUREN AND GUILLOU



sends the region

L=�2={` : Re[`]�
k

k+1
, } `&

k
k+1 }�

=
2=

onto a semidisk to the right of the vertical line Re[|]= 1
k+1 . It follows

that

Re { (1&zt) t
k&(k+1) zt=>

1
2(k+1)

when t is close enough to 1. This shows that the real part of (10) is greater
than

n
2(k+1) |

1

\
rn&1 dr>

1
4(k+1)

for \ near 1 and all z in the region L= . Combining this with (9), we see that
for sufficiently large n the polynomial F(&n, kn+1; kn+2; z) can have no
zeros in L= . Thus any zeros in the half-plane Re[z]� k

k+1 must converge
uniformly to the point k

k+1 as n � �. In fact, numerical evidence suggests
that the polynomial never has zeros in this half-plane, but we are unable
to prove it. In view of Lemma 3, our asymptotic result shows at least that
for n sufficiently large, the polynomial has at least one zero in the half-
plane Re[z]> k

k+1 . Later we will be able to conclude that many other
zeros are in this half-plane when n is large.

We now turn to the case Re[z]> k
k+1 . Our previous discussion shows

that each zero z=znj of F(&n, kn+1; kn+2; z) in that half-plane will
satisfy

|
1�z

0
[ f (t)]n dt+|

1

1�z
[ f (t)]n dt=0,

where the integrals are taken over paths of steepest ascent or descent. The
first integral is approximated by the asymptotic series (7), while the second
has the form (5) with t=t(r) determined by (4) and t(0)= 1

z , t(1)=1.
Introducing (4) into (5) and invoking (7), we can write

zkn+1(1&z)n |
1

0

(1&z) trn&1

k&(k+1) zt
dr

=&\ kk

(k+1)k+1+
n

- 2k?

(k+1)3�2
- n {1+O \1

n+= . (11)
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We shall suppose again that |z& k
k+1|�=>0. From (11) we may infer that

the zeros do not cluster at the point 1. For if some sequence of zeros tends
to 1, then by taking n th roots of moduli on both sides of (11) and letting
n � �, we can deduce that the left-hand side tends to zero while the right-
hand side does not. Thus we may also assume that |z&1|�=.

An argument similar to that already given for the case Re[z]< k
k+1 now

shows that the integral

n |
1

0

(1&zt) trn&1

k&(k+1) zt
dr (12)

remains bounded away from zero and infinity, uniformly in z, as n � �.
Thus by equating moduli in (11) and taking nth roots, we find as n � �
that the zeros tend uniformly to the right-hand branch of the lemniscate

|zk(1&z)|=
kk

(k+1)k+1 , Re[z]�
k

k+1
. (13)

In particular, an argument similar to that given for Re[z]< k
k+1 now

shows that the integral (12) has the form

n |
1

\

(1&zt) trn&1

k&(k+1) zt
dr+O(\n), n � �, (14)

uniformly for zeros z=znj satisfying

Re[z]>
k

k+1
, } z&

k
k+1 }�=>0. (15)

But those zeros approach the lemniscate (13), while t(r) � 1 as r � 1. It
therefore follows that for \ near 1 and n sufficiently large, the factor

FIG. 2. Zeros of F(&35, 29; 30; z) and lemniscate |zk(1&z)|=kk�(k+1)k+1, k=0.8.
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FIG. 3. Zeros of F(&40, 69; 70; z) and lemniscate |zk(1&z)|=kk�(k+1)k+1, k=1.7.

(1&zt) t
k&(k+1) zt in (14) is arbitrarily close to the image under the mapping
|=,(`)= 1&z`

k&(k+1) ` of that portion of the half-lemniscate (13) for which
|z& k

k+1|�=>0. This image is shaped like one branch of a hyperbola; it is
a bounded curve with |arg w|< 3?

4 . As n � �, the integral (12) tends to this
curve, and so with the choice of principal branch for the n th root,

lim
n � �

n
- n {|

1

0

(1&zt) trn&1

k&(k+1) zt
dr=

1�n

=1,

uniformly for all zeros z=znj in the region (15).
On the other hand, we have seen that for every n sufficiently large, the

hypergeometric polynomial has at least one zero in the half-plane Re[z]>
k

k+1. Such a zero must satisfy (11). But if we now take n th roots of both
sides of (11), we see that (for large n) there are n points satisfying (11),
distinguished by the n choices of n

- &1. All of these points are zeros of the
polynomial, spread out near the right-hand branch of the lemniscate. By
suitable choice of n

- &1, a sequence of values can be made to approach
any given point ei% on the unit circle as n � �. The corresponding zeros
z=znj will then approach the point on the right-hand branch of the
lemniscate determined by zk(1&z)=ei% (kk�(k+1)k+1). Thus each point of
the half-lemniscate is the limit of some sequence of zeros.

FIG. 4. Zeros of F(&15, 16; 17; z), corresponding fitted lemniscate, and lemniscate
|z(1&z)|= 1

4 .
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FIG. 5. Zeros of F(&25, 26; 27; z), corresponding fitted lemniscate, and lemniscate
|z(1&z)|= 1

4 .

Figures 2 and 3, generated by Mathematica, illustrate this result for
n=35, 40 and k=0.8, 1.7.

5. FITTED LEMNISCATES

A close inspection of Figs. 2 and 3 suggests that all of the zeros of
F(&n, kn+1; kn+2; z) actually lie on other lemniscates of the form

|(z&a)k (z&b)|=c,

where a, b, and c are real parameters. Figures 4, 5, and 6 show lemniscates
of this form fitted to the zeros by requiring the curve to pass through the
three points in the upper half-plane Im[z]�0 farthest to the right, with
parameters k=1 and n=15, 25, 35 respectively. All zeros appear to lie
on these lemniscates, and the fitted lemniscates appear to approach the
asymptotic lemniscate |z(z&1)|= 1

4 as n � �. Such regular behavior seems
to us unlikely, but we have investigated the question numerically as well as
graphically and have not been able to rule it out.

FIG. 6. Zeros of F(&35, 36; 37; z), corresponding fitted lemniscate, and lemniscate
|z(1&z)|= 1

4 .
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